Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38460677

RESUMEN

BACKGROUND: Clinical efficacy of oral immunotherapy (OIT) has been associated with the induction of blocking antibodies, particularly those capable of disrupting IgE-allergen interactions. Previously, we identified mAbs to Ara h 2 and structurally characterized their epitopes. OBJECTIVE: We investigated longitudinal changes during OIT in antibody binding to conformational epitopes and correlated the results with isotype and clinical efficacy. METHODS: We developed an indirect inhibitory ELISA using mAbs to block conformational epitopes on immobilized Ara h 2 from binding to serum immunoglobulins from peanut-allergic patients undergoing OIT. We tested the functional blocking ability of mAbs using passive cutaneous anaphylaxis in mice with humanized FcεRI receptors. RESULTS: Diverse serum IgE recognition of Ara h 2 conformational epitopes are similar before and after OIT. Optimal inhibition of serum IgE occurs with the combination of 2 neutralizing mAbs (nAbs) recognizing epitopes 1.2 and 3, compared to 2 nonneutralizing mAbs (non-nAbs). After OIT, IgG4 nAbs, but not IgG1 or IgG2 nAbs, increased in sustained compared to transient outcomes. Induction of IgG4 nAbs occurs after OIT only in those with sustained efficacy. Murine passive cutaneous anaphylaxis after sensitization with pooled human sera is significantly inhibited by nAbs compared to non-nAbs. CONCLUSIONS: Serum IgE conformational epitope diversity remains unchanged during OIT. However, IgG4 nAbs capable of uniquely disrupting IgE-allergen interactions to prevent effector cell activation are selectively induced in OIT-treated individuals with sustained clinical efficacy. Therefore, the induction of neutralizing IgG4 antibodies to Ara h 2 are clinically relevant biomarkers of durable efficacy in OIT.

2.
Clin Exp Immunol ; 216(1): 25-35, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38346116

RESUMEN

In peanut allergy, Arachis hypogaea 2 (Ara h 2) and Arachis hypogaea 6 (Ara h 6) are two clinically relevant peanut allergens with known structural and sequence homology and demonstrated cross-reactivity. We have previously utilized X-ray crystallography and epitope binning to define the epitopes on Ara h 2. We aimed to quantitatively characterize the cross-reactivity between Ara h 2 and Ara h 6 on a molecular level using human monoclonal antibodies (mAbs) and structural characterization of allergenic epitopes. We utilized mAbs cloned from Ara h 2 positive single B cells isolated from peanut-allergic, oral immunotherapy-treated patients to quantitatively analyze cross-reactivity between recombinant Ara h 2 (rAra h 2) and Ara h 6 (rAra h 6) proteins using biolayer interferometry and indirect inhibitory ELISA. Molecular dynamics simulations assessed time-dependent motions and interactions in the antibody-antigen complexes. Three epitopes-conformational epitopes 1.1 and 3, and the sequential epitope KRELRNL/KRELMNL-are conserved between Ara h 2 and Ara h 6, while two more conformational and three sequential epitopes are not. Overall, mAb affinity was significantly lower to rAra h 6 than it was to rAra h 2. This difference in affinity was primarily due to increased dissociation of the antibodies from rAra h 6, a phenomenon explained by the higher conformational flexibility of the Ara h 6-antibody complexes in comparison to Ara h 2-antibody complexes. Our results further elucidate the cross-reactivity of peanut 2S albumins on a molecular level and support the clinical immunodominance of Ara h 2.


Asunto(s)
Arachis , Proteínas de Plantas , Humanos , Arachis/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Antígenos de Plantas/química , Anticuerpos Monoclonales , Albuminas 2S de Plantas/química , Inmunoglobulina E , Epítopos , Alérgenos
3.
Clin Exp Allergy ; 54(1): 46-55, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38168500

RESUMEN

INTRODUCTION: Adverse reactions are relatively common during peanut oral immunotherapy. To reduce the risk to the patient, some researchers have proposed modifying the allergen to reduce IgE reactivity, creating a putative hypoallergen. Analysis of recently cloned human IgG from patients treated with peanut immunotherapy suggested that there are three common conformational epitopes for the major peanut allergen Ara h 2. We sought to test if structural information on these epitopes could indicate mutagenesis targets for designing a hypoallergen and evaluated the reduction in IgE binding via immunochemistry and a mouse model of passive cutaneous anaphylaxis (PCA). METHODS: X-ray crystallography characterized the conformational epitopes in detail, followed by mutational analysis of key residues to modify monoclonal antibody (mAb) and serum IgE binding, assessed by ELISA and biolayer interferometry. A designed Ara h 2 hypoallergen was tested for reduced vascularization in mouse PCA experiments using pooled peanut allergic patient serum. RESULTS: A ternary crystal structure of Ara h 2 in complex with patient antibodies 13T1 and 13T5 was determined. Site-specific mutants were designed that reduced 13T1, 13T5, and 22S1 mAbs binding by orders of magnitude. By combining designed mutations from the three major conformational bins, a hexamutant (Ara h 2 E46R, E89R, E97R, E114R, Q146A, R147E) was created that reduced IgE binding in serum from allergic patients. Further, in the PCA model where mice were primed with peanut allergic patient serum, reactivity upon allergen challenge was significantly decreased using the hexamutant. CONCLUSION: These studies demonstrate that prior knowledge of common conformational epitopes can be used to engineer reduced IgE reactivity, an important first step in hypoallergen design.


Asunto(s)
Hipersensibilidad , Hipersensibilidad al Cacahuete , Humanos , Animales , Ratones , Epítopos , Secuencia de Aminoácidos , Antígenos de Plantas , Inmunoglobulina E , Albuminas 2S de Plantas , Alérgenos , Arachis
4.
J Clin Invest ; 133(2)2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36647835

RESUMEN

In IgE-mediated food allergies, exposure to the allergen activates systemic allergic responses. Oral immunotherapy (OIT) treats food allergies through incremental increases in oral allergen exposure. However, OIT only induces sustained clinical tolerance and decreased basophil sensitivity in a subset of individuals despite increases in circulating allergen-specific IgG in all treated individuals. Therefore, we examined the allergen-specific antibodies from 2 OIT cohorts of patients with sustained and transient responses. Here, we compared antibodies from individuals with sustained or transient responses and discovered specific tolerance-associated conformational epitopes of the immunodominant allergen Ara h 2 recognized by neutralizing antibodies. First, we identified what we believe to be previously unknown conformational, intrahelical epitopes using x-ray crystallography with recombinant antibodies. We then identified epitopes only recognized in sustained tolerance. Finally, antibodies recognizing tolerance-associated epitopes effectively neutralized allergen to suppress IgE-mediated effector cell activation. Our results demonstrate the molecular basis of antibody-mediated protection in IgE-mediated food allergy, by defining how these antibodies disrupt IgE-allergen interactions to prevent allergic reactions. Our approach to studying the structural and functional basis for neutralizing antibodies demonstrates the clinical relevance of specific antibody clones in antibody-mediated tolerance. We anticipate that our findings will form the foundation for treatments of peanut allergy using neutralizing antibodies and hypoallergens.


Asunto(s)
Hipersensibilidad a los Alimentos , Hipersensibilidad al Cacahuete , Humanos , Alérgenos , Hipersensibilidad al Cacahuete/terapia , Desensibilización Inmunológica/métodos , Anticuerpos Neutralizantes , Inmunoglobulina E , Epítopos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...